DESCRIPTION

The \(\mu \)PC3219GV is a silicon monolithic IC designed for use as AGC amplifier for digital CATV, cable modem systems. This IC consists of gain control amplifier and video amplifier.

The package is 8-pin SSOP suitable for surface mount.

This IC is manufactured using our 10 GHz f_{T} NESAT II AL silicon bipolar process. This process uses silicon nitride passivation film. This material can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

FEATURES

- Low distortion: \(IM_3 = 58 \text{ dBc TYP.} \) @ single-ended output, \(V_{out} = 0.7 \text{ Vp-p/tone} \)
- Wide AGC dynamic range: \(\text{GCR} = 42.5 \text{ dB TYP.} \)
- On-chip video amplifier: \(V_{out} = 1.0 \text{ Vp-p TYP.} \) @ single-ended output
- Supply voltage: \(V_{CC} = 5.0 \text{ V TYP.} \)
- Packaged in 8-pin SSOP suitable for surface mounting

APPLICATION

- Digital CATV/Cable modem receivers

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Marking</th>
<th>Supplying Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)PC3219GV-E1</td>
<td>8-pin plastic SSOP (4.45 mm (175))</td>
<td>3219</td>
<td>• Embossed tape 8 mm wide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Pin 1 indicates pull-out direction of tape</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Qty 1 kpcs/reel</td>
</tr>
</tbody>
</table>

Remark

To order evaluation samples, contact your nearby sales office.

Part number for sample order: \(\mu \)PC3219GV

Caution

Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

© NEC Compound Semiconductor Devices, Ltd. 2001, 2004
INTERNAL BLOCK DIAGRAM AND PIN CONNECTIONS

(Top View)

VCC 1

INPUT1 2

INPUT2 3

VAGC 4

AGC Cont.

8 GND1

7 OUTPUT1

6 OUTPUT2

5 GND2

PRODUCT LINE-UP OF 5 V AGC AMPLIFIER

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Icc (mA)</th>
<th>GMAX (dB)</th>
<th>GMIN (dB)</th>
<th>GCR (dB)</th>
<th>NF (dB)</th>
<th>IM3 (dBc)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>µPC3217GV</td>
<td>23</td>
<td>53</td>
<td>0</td>
<td>53</td>
<td>6.5</td>
<td>50</td>
<td>8-pin SSOP (4.45 mm (175))</td>
</tr>
<tr>
<td>µPC3218GV</td>
<td>23</td>
<td>63</td>
<td>10</td>
<td>53</td>
<td>3.5</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>µPC3219GV</td>
<td>36.5</td>
<td>42.5</td>
<td>0</td>
<td>42.5</td>
<td>9.0</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>

Note f1 = 44 MHz, f2 = 45 MHz, Vout = 0.7 Vp-p/tone, single-ended output
PIN EXPLANATIONS

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Applied Voltage (V)</th>
<th>Pin Voltage (V)</th>
<th>Function and Application</th>
<th>Internal Equivalent Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vcc</td>
<td>4.5 to 5.5</td>
<td>–</td>
<td>Power supply pin. This pin should be externally equipped with bypass capacitor to minimize ground impedance.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>INPUT1</td>
<td>–</td>
<td>1.45</td>
<td>Signal input pins to AGC amplifier. This pin should be coupled with capacitor for DC cut.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>INPUT2</td>
<td>–</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>VAGC</td>
<td>0 to Vcc</td>
<td>–</td>
<td>Gain control pin. This pin’s bias govern the AGC output level. Minimum Gain at VAGC < 0.5 V Maximum Gain at VAGC > 4.5 V Recommended to use AGC voltage with externally resistor (example:100 kΩ).</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND2</td>
<td>0</td>
<td>–</td>
<td>Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>OUTPUT2</td>
<td>–</td>
<td>2.2</td>
<td>Signal output pins of video amplifier. This pin should be coupled with capacitor for DC cut.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>OUTPUT1</td>
<td>–</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>GND1</td>
<td>0</td>
<td>–</td>
<td>Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All ground pins must be connected together with wide ground pattern to decrease impedance difference.</td>
<td></td>
</tr>
</tbody>
</table>

Note Pin voltage is measured at Vcc = 5.0 V.
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>(V_{CC})</td>
<td>(T_A = +25^\circ C)</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>(P_D)</td>
<td>(T_A = +85^\circ C)</td>
<td>Note</td>
<td>250 mW</td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>(T_A)</td>
<td></td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{stg})</td>
<td></td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note Mounted on double-sided copper-clad 50 × 50 × 1.6 mm epoxy glass PWB

RECOMMENDED OPERATING RANGE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>(V_{CC})</td>
<td>(V_{CC} = 4.5) to (5.5) V</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>(T_A)</td>
<td>(V_{CC} = 4.5) to (5.5) V</td>
<td>-40</td>
<td>+25</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Gain Control Voltage Range</td>
<td>(V_{AGC})</td>
<td></td>
<td>0</td>
<td>–</td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>Operating Frequency Range</td>
<td>(f_{BW})</td>
<td></td>
<td>10</td>
<td>45</td>
<td>100</td>
<td>MHz</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS
(T\(\text{A} = +25^\circ\text{C}, \ V_{\text{CC}} = 5 \ \text{V}, \ f = 45 \ \text{MHz}, \ Z_s = 50 \ \Omega, \ Z_L = 250 \ \Omega, \ \text{single-ended output})

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit Current</td>
<td>(I_{\text{CC}})</td>
<td>No input signal (\text{Note 1})</td>
<td>27.5</td>
<td>36.5</td>
<td>43.5</td>
<td>mA</td>
</tr>
<tr>
<td>AGC Voltage High Level</td>
<td>(V_{\text{AGC (H)}})</td>
<td>@ Maximum gain (\text{Note 1})</td>
<td>4.5</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>AGC Voltage Low Level</td>
<td>(V_{\text{AGC (L)}})</td>
<td>@ Minimum gain (\text{Note 1})</td>
<td>0</td>
<td>–</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>RF Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Voltage Gain</td>
<td>(G_{\text{MAX}})</td>
<td>(V_{\text{AGC}} = 4.5 \ \text{V}, \ P_n = -40 \ \text{dBm} \ \text{Note 1})</td>
<td>39</td>
<td>42.5</td>
<td>45</td>
<td>dB</td>
</tr>
<tr>
<td>Minimum Voltage Gain</td>
<td>(G_{\text{MIN}})</td>
<td>(V_{\text{AGC}} = 0.5 \ \text{V}, \ P_n = -20 \ \text{dBm} \ \text{Note 1})</td>
<td>–4</td>
<td>0</td>
<td>4</td>
<td>dB</td>
</tr>
<tr>
<td>Gain Control Range</td>
<td>(G_{\text{CR}})</td>
<td>(V_{\text{AGC}} = 0.5 \ \text{to} \ 4.5 \ \text{V} \ \text{Note 1})</td>
<td>35</td>
<td>42.5</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>(V_{\text{out}})</td>
<td>(P_n = -38 \ \text{to} \ -13 \ \text{dBm} \ \text{Note 1})</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
<td>(V_{\text{pp}})</td>
</tr>
<tr>
<td>Maximum Output Voltage</td>
<td>(V_{\text{clip}})</td>
<td>(V_{\text{AGC}} = 4.5 \ \text{V} @ \text{Maximum gain} \ \text{Note 1})</td>
<td>2.5</td>
<td>3.4</td>
<td>–</td>
<td>(V_{\text{pp}})</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>(NF)</td>
<td>(V_{\text{AGC}} = 4.5 \ \text{V} @ \text{Maximum gain} \ \text{Note 2})</td>
<td>–</td>
<td>9.0</td>
<td>10.5</td>
<td>dB</td>
</tr>
</tbody>
</table>

Notes
1. By measurement circuit 1
2. By measurement circuit 2
STANDARD CHARACTERISTICS (TA = +25°C, Vcc = 5 V, Zs = 50 Ω)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Reference Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Impedance</td>
<td>Zin</td>
<td>VAGC = 0.5 V, f = 45 MHz</td>
<td>1.2 k – j1.5 k</td>
<td>Ω</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>Zout</td>
<td>VAGC = 0.5 V, f = 45 MHz</td>
<td>6.0 + j3.2</td>
<td>Ω</td>
</tr>
<tr>
<td>3rd Order Input Intercept Point</td>
<td>IIP3</td>
<td>VAGC = 0.5 V @ Minimum gain, f1 = 44 MHz, f2 = 45 MHz, ZL = 250 Ω @ single-ended output</td>
<td>-1</td>
<td>dBm</td>
</tr>
<tr>
<td>3rd Order Intermodulation</td>
<td>IM31</td>
<td>f1 = 44 MHz, f2 = 45 MHz, ZL = 250 Ω, Pn = -37 to -20 dBm/tone, Vout = 1.0 Vp-p/tone @ single-ended output</td>
<td>52</td>
<td>dBC</td>
</tr>
<tr>
<td>Distortion 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Order Intermodulation</td>
<td>IM32</td>
<td>f1 = 44 MHz, f2 = 45 MHz, ZL = 250 Ω, Pn = -40 to -23 dBm/tone, Vout = 0.7 Vp-p/tone @ single-ended output</td>
<td>58</td>
<td>dBC</td>
</tr>
<tr>
<td>Distortion 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Order Intermodulation</td>
<td>IM33</td>
<td>f1 = 44 MHz, f2 = 45 MHz, ZL = 500 Ω, Pn = -37 to -20 dBm/tone, Vout = 2.0 Vp-p/tone @ differential output</td>
<td>52</td>
<td>dBC</td>
</tr>
<tr>
<td>Distortion 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Order Intermodulation</td>
<td>IM34</td>
<td>f1 = 44 MHz, f2 = 45 MHz, ZL = 500 Ω, Pn = -40 to -23 dBm/tone, Vout = 1.4 Vp-p/tone @ differential output</td>
<td>58</td>
<td>dBC</td>
</tr>
<tr>
<td>Distortion 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Order Intermodulation</td>
<td>IM1</td>
<td>f1 = 44 MHz, f2 = 45 MHz, ZL = 500 Ω, Pn = -37 to -22 dBm/tone, Vout = 2.0 Vp-p/tone @ differential output</td>
<td>45</td>
<td>dBC</td>
</tr>
<tr>
<td>Distortion 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Order Intermodulation</td>
<td>IM2</td>
<td>f1 = 44 MHz, f2 = 45 MHz, ZL = 500 Ω, Pn = -40 to -23 dBm/tone, Vout = 1.4 Vp-p/tone @ differential output</td>
<td>47</td>
<td>dBC</td>
</tr>
<tr>
<td>Distortion 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
1. By measurement circuit 3
2. By measurement circuit 1
3. By measurement circuit 4
TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)

CIRCUIT CURRENT vs. SUPPLY VOLTAGE

VOLTAGE GAIN vs. FREQUENCY

VOLTAGE GAIN vs. AGC VOLTAGE

OUTPUT POWER vs. INPUT POWER

Note Measurement value with spectrum analyzer.

Remark The graphs indicate nominal characteristics.
NOISE FIGURE vs. AGC VOLTAGE

- $V_{CC} = 4.5\,\text{V}$
- $V_{CC} = 5.0\,\text{V}$
- $V_{CC} = 5.5\,\text{V}$

$f = 45\,\text{MHz}$
$Z_l = 250\,\Omega$

VAGC = 0.5 V
measurement circuit 2

VAGC = 4.5 V
measurement circuit 1

VAGC = 2.5 V
measurement circuit 1

NOISE FIGURE vs. FREQUENCY

- $V_{CC} = 4.5\,\text{V}$
- $V_{CC} = 5.0\,\text{V}$
- $V_{CC} = 5.5\,\text{V}$

$Z_l = 250\,\Omega$
$V_{AGC} = 4.5\,\text{V}$
measurement circuit 2

3RD ORDER INTERMODULATION DISTORTION

- $f_1 = 44\,\text{MHz}$
- $f_2 = 45\,\text{MHz}$
- $Z_l = 250\,\Omega$

measurement circuit 1

3RD ORDER INTERMODULATION DISTORTION

- $f_1 = 44\,\text{MHz}$
- $f_2 = 45\,\text{MHz}$
- $Z_l = 250\,\Omega$

measurement circuit 2

Note Measurement value with spectrum analyzer.

Remark The graphs indicate nominal characteristics.
IM₃, OUTPUT POWER, AGC VOLTAGE vs. INPUT POWER

- **Conditions**
 - \(f_1 = 44 \text{ MHz} \)
 - \(f_2 = 45 \text{ MHz} \)
 - \(Z_L = 250 \Omega \)
 - \(V_{out} = 0.7 \text{ Vp-p/tone} \)
 - Measurement circuit 1

- **Note** Measurement value with spectrum analyzer.

Remark The graphs indicate nominal characteristics.
IM₃, OUTPUT POWER, AGC VOLTAGE vs. INPUT POWER

- Conditions
 - f₁ = 44 MHz
 - f₂ = 45 MHz
 - Z_L = 250 Ω
 - V_OUT = 1.0 Vp-p/tone Constant

- Measurement circuit 1

Note: Measurement value with spectrum analyzer.

Remark: The graphs indicate nominal characteristics.
S-PARAMETERS (TA = +25°C, VCC = 5.0 V)

S11—FREQUENCY

Marker 1 45 MHz

1.229 kΩ – j1.522 kΩ

START 0.100 000 MHz STOP 1000.000 000 MHz

S22—FREQUENCY

Marker 1 45 MHz

6.035 + j3.157 Ω

START 0.100 000 MHz STOP 1000.000 000 MHz
MEASUREMENT CIRCUIT 1

Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)

MEASUREMENT CIRCUIT 2

Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)
MEASUREMENT CIRCUIT 3

VCC

1 µF

1 µF

1 µF

10 kΩ

13 kΩ

10 kΩ

1 µF

Network Analyzer

50 Ω 50 Ω

MEASUREMENT CIRCUIT 4

VCC

1 µF

1 µF

1 µF

1 µF

Signal Generator

50 Ω

50 Ω

10 kΩ

13 kΩ

10 kΩ

1 µF

Differential Probe

(10 : 1) 1 MΩ // 7pF

Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)
MEASUREMENT CIRCUIT 5

Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)

APPLICATION CIRCUIT EXAMPLE

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.
ILLUSTRATION OF THE EVALUATION BOARD FOR MEASUREMENT CIRCUIT 1

Note Balun Transformer

Remarks 1. Back side: GND pattern
2. Solder plated on pattern
3. \(\sigma \): Through holes
4. \(\square \) represents cutout
5. \(\Box \Box \Box \Box \) represents short-circuit strip
PACKAGE DIMENSIONS

8-PIN PLASTIC SSOP (4.45 mm (175)) (UNIT: mm)
NOTES ON CORRECT USE

(1) Observe precautions for handling because of electro-static sensitive devices.

(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
 All the ground pins must be connected together with wide ground pattern to decrease impedance difference.

(3) The bypass capacitor should be attached to Vcc line.

★ RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

<table>
<thead>
<tr>
<th>Soldering Method</th>
<th>Soldering Conditions</th>
<th>Condition Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared Reflow</td>
<td>Peak temperature (package surface temperature) : 260°C or below</td>
<td>IR260</td>
</tr>
<tr>
<td></td>
<td>Time at peak temperature : 10 seconds or less</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time at temperature of 220°C or higher : 60 seconds or less</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preheating time at 120 to 180°C : 120±30 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum number of reflow processes : 3 times</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below</td>
<td></td>
</tr>
<tr>
<td>VPS max</td>
<td>Peak temperature (package surface temperature) : 215°C or below</td>
<td>VP215</td>
</tr>
<tr>
<td></td>
<td>Time at temperature of 200°C or higher : 25 to 40 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preheating time at 120 to 150°C : 30 to 60 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum number of reflow processes : 3 times</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below</td>
<td></td>
</tr>
<tr>
<td>Wave Soldering</td>
<td>Peak temperature (molten solder temperature) : 260°C or below</td>
<td>WS260</td>
</tr>
<tr>
<td></td>
<td>Time at peak temperature : 10 seconds or less</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preheating temperature (package surface temperature) : 120°C or below</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum number of flow processes : 1 time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below</td>
<td></td>
</tr>
<tr>
<td>Partial Heating</td>
<td>Peak temperature (pin temperature) : 350°C or below</td>
<td>HS350</td>
</tr>
<tr>
<td></td>
<td>Soldering time (per side of device) : 3 seconds or less</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below</td>
<td></td>
</tr>
</tbody>
</table>

Note Excluding lead-free products

Caution Do not use different soldering methods together (except for partial heating).
• The information in this document is current as of August, 2004. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.

• No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

• NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.

• Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.

• While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.

• NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.

2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).
For further information, please contact

E-mail: salesinfo@ml.ncsd.necel.com (sales and general)
 techinfo@ml.ncsd.necel.com (technical)
Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579

NEC Compound Semiconductor Devices Hong Kong Limited
E-mail: ncshk-elhk.nec.com.hk (sales, technical and general)
Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309
Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859
Korea Branch Office TEL: +82-2-558-2120 FAX: +82-2-558-5209

NEC Electronics (Europe) GmbH http://www.ee.nec.de/
TEL: +49-211-6503-0 FAX: +49-211-6503-1327

TEL: +1-408-988-3500 FAX: +1-408-988-0279