Analog-to-Digital Converter (ADC) Performance Specifications

- **Total Jitter**: $t_j (RMS) - 20 \mu s / 39.1$ Fs
- **Nonlinear inputs**: 14 bits
- **DAC Clock Feedthrough**: Less than 0.5 bits
- **Differential Nonlinearities**: 0.05
- **Zero-Code Error**: Typically expressed in LSBs
- **SDR (dBc)**: -72 dBc
- **2nd and 3rd Image Harmonics**
- **Corner Frequency**: f_a MHz
- **Input Signal Level (Carrier)**: 1 V p-p
- **Full-Scale Analog Input Frequency**: 1 kHz
- **Unipolar Single-Ended**: 0 V to 1 V
- **Unipolar Differential**: 0 V to 1 V

Real-world signal processing allows for efficient and cost-effective solutions in various applications such as direct IF-to-digital conversion.

A signal with a maximum frequency f_a must be sampled at a rate $F_s > 2f_a$ or information about the signal will be lost because of aliasing.

Deadband Errors: DACs with integrated output amplifiers may have deadband errors.

- **Slew Rate**: 600 mV/μs
- **Rejection**: Out-of-Band (-20 dB)
- **Input Impedance**: 50 Ω
- **Output Impedance**: 50 Ω
- **Data Rates**: 1 Msample/s

Input Offset Error: $0.1 \mu V$ at $25°C$

Signal to Noise Ratio (SNR): 96 dB

Effective Number of Bits (ENOB): 6.25

Input Referred Jitter: 0.25 ps

ADC clock jitter: 0.1 ps

Switching Power Consumption: 700 mW

Input Reference Level: 1.25 V

Output Swing: ±1 V

Power Supply: 5 V

Differential Nonlinearities: 0.05

Zero-Code Error: Typically expressed in LSBs

Full-Scale Error: A measure of the output error when full-scale code is applied.

- **Zero-Code Error**: Typically expressed in LSBs
- **Gain Error**: Typically expressed in LSBs

Non-ideal Code: Often measured for midscale LSB transition (011...111 to 100...000)

Integral Nonlinearity (INL): ± 1 LSB

Total Harmonic Distortion (THD): 74 dB

Image Frequency: 20 Hz

Impulse Response: Less than 0.5 bits

Signal Bandwidth: 1 MHz

Your Global Source for RF, Wireless & Energy Technologies | www.richardsonrfpd.com | 800.737.6937 | 630.208.2700

Nyquist Zone:
- Zone 1
- Zone 2
- Zone 3
- Zone 4

Slewing: The size of a least significant bit (LSB) is a measure of the output error when full-scale code is applied.

SNR: 20 log 10 (signal/noise)

ENOB: 2.5 log 10 (signal/noise)