HETERO JUNCTION FIELD EFFECT TRANSISTOR

NE3514S02

K BAND SUPER LOW NOISE AMPLIFIER
N-CHANNEL HJ-FET

FEATURES
- Super low noise figure and high associated gain
 \(NF = 0.75 \) dB TYP., \(G_a = 10 \) dB TYP. @ \(f = 20 \) GHz
- Micro-X plastic (S02) package

APPLICATIONS
- 20 GHz-band DBS LNB
- Other K-band communication systems

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Order Number</th>
<th>Package</th>
<th>Quantity</th>
<th>Marking</th>
<th>Supplying Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE3514S02-T1C</td>
<td>NE3514S02-T1C-A</td>
<td>S02 (Pb-Free)</td>
<td>2 kpcs/reel</td>
<td>D</td>
<td>• 8 mm wide embossed taping</td>
</tr>
<tr>
<td>NE3514S02-T1D</td>
<td>NE3514S02-T1D-A</td>
<td>S02 (Pb-Free)</td>
<td>10 kpcs/reel</td>
<td></td>
<td>• Pin 4 (Gate) faces the perforation side of the tape</td>
</tr>
</tbody>
</table>

Remark To order evaluation samples, contact your nearby sales office.
Part number for sample order: NE3514S02

ABSOLUTE MAXIMUM RATINGS (\(T_a = +25^\circ \text{C} \))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Voltage</td>
<td>(V_{DS})</td>
<td>4</td>
<td>V</td>
</tr>
<tr>
<td>Gate to Source Voltage</td>
<td>(V_{SS})</td>
<td>-3</td>
<td>V</td>
</tr>
<tr>
<td>Drain Current</td>
<td>(I_D)</td>
<td>(I_{DS})</td>
<td>mA</td>
</tr>
<tr>
<td>Gate Current</td>
<td>(I_G)</td>
<td>100</td>
<td>(\mu)A</td>
</tr>
<tr>
<td>Total Power Dissipation</td>
<td>(P_{tot})</td>
<td>165</td>
<td>mW</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>(T_{ch})</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{stg})</td>
<td>-65 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note Mounted on 1.08 cm\(^2\) x 1.0 mm (l) glass epoxy PCB

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.
RECOMMENDED OPERATING CONDITIONS (TA = +25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Voltage</td>
<td>V_{DS}</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>Drain Current</td>
<td>I_D</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>mA</td>
</tr>
<tr>
<td>Input Power</td>
<td>P_{in}</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>dBm</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate to Source Leak Current</td>
<td>I_{GS}</td>
<td>$V_{GS} = -3$ V</td>
<td>–</td>
<td>0.5</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Saturated Drain Current</td>
<td>I_{DS}</td>
<td>$V_{DS} = 2$ V, $V_{GS} = 0$ V</td>
<td>15</td>
<td>40</td>
<td>70</td>
<td>mA</td>
</tr>
<tr>
<td>Gate to Source Cutoff Voltage</td>
<td>V_{GS} (off)</td>
<td>$V_{DS} = 2$ V, $I_D = 100$ µA</td>
<td>–0.2</td>
<td>–0.7</td>
<td>–2.0</td>
<td>V</td>
</tr>
<tr>
<td>Transconductance</td>
<td>g_m</td>
<td>$V_{DS} = 2$ V, $I_D = 10$ mA</td>
<td>40</td>
<td>55</td>
<td>–</td>
<td>mS</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>NF</td>
<td>$V_{DS} = 2$ V, $I_O = 10$ mA, $f = 20$ GHz</td>
<td>–</td>
<td>0.75</td>
<td>1.0</td>
<td>dB</td>
</tr>
<tr>
<td>Associated Gain</td>
<td>G_a</td>
<td></td>
<td>8</td>
<td>10</td>
<td>–</td>
<td>dB</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS (T_A = +25°C, unless otherwise specified)

TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE

Mounted on Glass Epoxy PCB (1.08 cm² x 1.0 mm (t))

DRAIN CURRENT vs. GATE TO SOURCE VOLTAGE

DRAIN TO SOURCE VOLTAGE

MINIMUM NOISE FIGURE, ASSOCIATED GAIN vs. FREQUENCY

Remark The graphs indicate nominal characteristics.
S-PARAMETERS

S-parameters/Noise parameters are provided on the NEC Compound Semiconductor Devices Web site in a form (S2P) that enables direct import to a microwave circuit simulator without keyboard input.

Click here to download S-parameters.

[RF and Microwave] → [Device Parameters]

URL http://www.ncsd.necel.com/
RF MEASURING LAYOUT PATTERN (REFERENCE ONLY) (UNIT: mm)

- Reference Plane (Calibration Plane)
- RT/duroid 5880/ROGERS
 - $t = 0.254 \text{ mm}$
 - $\varepsilon_r = 2.20$
 - $\tan \delta = 0.0009 \text{ @} 10 \text{ GHz}$
PACKAGE DIMENSIONS

S02 (UNIT: mm)

(Top View)

(Bottom View)

(Side View)

PIN CONNECTIONS

1. Source
2. Drain
3. Source
4. Gate
RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

<table>
<thead>
<tr>
<th>Soldering Method</th>
<th>Soldering Conditions</th>
<th>Condition Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared Reflow</td>
<td>Peak temperature (package surface temperature) : 260°C or below</td>
<td>IR260</td>
</tr>
<tr>
<td></td>
<td>Time at peak temperature : 10 seconds or less</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time at temperature of 220°C or higher : 60 seconds or less</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preheating time at 120 to 180°C : 120±30 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum number of reflow processes : 3 times</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below</td>
<td></td>
</tr>
<tr>
<td>Partial Heating</td>
<td>Peak temperature (terminal temperature) : 350°C or below</td>
<td>HS350</td>
</tr>
<tr>
<td></td>
<td>Soldering time (per side of device) : 3 seconds or less</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below</td>
<td></td>
</tr>
</tbody>
</table>

Caution Do not use different soldering methods together (except for partial heating).
When the product(s) listed in this document is subject to any applicable import or export control laws and regulation of the authority having competent jurisdiction, such product(s) shall not be imported or exported without obtaining the import or export license.

• The information in this document is current as of February, 2006. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC’s data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.

• No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

• NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.

• Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.

• While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.

• NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.

 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

 "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

 "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC’s data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC’s willingness to support a given application.

(Note)
(1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).
Caution

GaAs Products

This product uses gallium arsenide (GaAs). GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 1. Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

For further information, please contact

E-mail: salesinfo@ml.ncsd.necel.com (sales and general)
 techinfo@ml.ncsd.necel.com (technical)
Sales Division TEL: +81-44-435-1573 FAX: +81-44-435-1579

NEC Compound Semiconductor Devices Hong Kong Limited
E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)
Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309
Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859
Korea Branch Office TEL: +82-2-558-2120 FAX: +82-2-558-5209

NEC Electronics (Europe) GmbH http://www.ee.nec.de/
TEL: +49-211-6503-0 FAX: +49-211-6503-1327

TEL: +1-408-988-3500 FAX: +1-408-988-0279