Microchip Electronic Fuse (E-Fuse) Demonstrator

Provides a faster, more reliable method for protecting power electronics applications
High-Voltage Auxiliary Silicon Carbide E-Fuse Demonstrator

High-Voltage Auxiliary Silicon Carbide E-Fuse Demonstrator

You can use this high-voltage auxiliary silicon carbide E-Fuse demonstrator in Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) applications. This technology demonstrator leverages the benefits of Microchip’s 700V and 1200V Silicon Carbide (SiC) technology and other technologies to provide a complete solution.

Additionally, this design implements a Time-Current Characteristic (TCC) curve that helps you migrate to non-automotive applications such as DC solid-state circuit breakers.

With increasing high-voltage content in automotive and industrial end equipment comes a greater need for protection. E-Fuse, enabled by SiC technology, provides a faster, more reliable method for protecting power electronic applications. E-Fuse solutions can detect and interrupt fault currents microseconds faster than traditional approaches. Fast response times limit peak fault current and prevent a fault event from becoming a hard failure. Take advantage of the following benefits of E-Fuse technology:

  • Use in both 400V and 800V battery systems
  • High-voltage solid-state relay with over-current protection
  • Faster time to market
  • Optimal performance and efficiency
  • A proven solution that avoids sourcing individual parts
  • Risk reduction through reliability and accelerated development
Microchip Logo

E-Fuse Technology Benefits


  • Configurable current limit profile
  • LIN communication interface for configurability and diagnostics
  • High-side or low-side drive configuration
  • Short-circuit withstand time: 10 µs
  • Rated current: 30A
  • Low-voltage operating range: 9V to 16V
  • High-voltage operating range: 200V to 900V
  • Operating temperature range: −40°C to 85°C
  • Use in automotive applications
  • Automotive hardware design that uses only AEC-qualified components
  • Six variants of this high-voltage auxiliary E-Fuse design that support 400V and 800V bus voltages and continuous current ratings of 10A, 20A and 30A
  • Up to 20 kHz switching frequency


  • Induction heating
  • Motor drives
  • Energy generation / Smart grids / Smart energy
  • Railway
  • EV fast charging
  • UPS and SMPS

Additional Documentation

Altium Design Files

Bill of Materials

Software PLECS Model

User Guide

May 24, 2022
This article highlights Microchip’s SiC devices available from Richardson RFPD that enable DC circuit protection.

Featured Products

Microchip’s SiC MOSFETs are in TO-247 4-lead packages. These packages provide access to the Kelvin source, which is wire bonded directly to the die, bypassing the effect of di/dt in the source inductance. This provides greater control over the SiC MOSFET, especially during fast, high-current transient conditions.

The circuit layout includes slots and sufficient creepage distance to accommodate both 700V and 1200V SiC MOSFETs. Depending on the target voltage and current rating, you can populate the high-voltage auxiliary E-Fuse design with the devices as shown in the table below.

Energy & Power Design Support

Allow us an opportunity to assess your project and help bring your vision to market faster.

About our Team of Experts

Our team of global applications engineers are available to answer your questions to ensure your power conversion or energy storage system design meets your performance expectations. If you’re transitioning from silicon to gallium nitride (GaN) or silicon carbide (SiC), we’ll help identify the right switching device to achieve the power density and increased efficiency your application requires.